Общая характеристика элементов V-А группы  

Общая характеристика элементов V-А группы

Главная подгруппа V группы периодической системы Д.И. Менделеева включает пять элементов: типичные p-элементы азот N, фосфор P, а также сходные с ними элементы больших периодов мышьяк As, сурьму Sb, и висмут Bi. Они имеют общее название пниктогены. Атомы этих элементов имеют на внешнем уровне по 5 электронов (конфигурация пs2 пp3).

В соединениях элементы проявляют степень окисления от -3 до 5. Наиболее характерны степени +3 и +5. Для висмута более характерна степень окисления +3.

При переходе от N к Bi радиус атома закономерно возрастает. С увеличением размеров атомов уменьшается энергия ионизации. Это значит, что связь электронов наружного энергетического уровня с ядром у атомов ослабевает, что приводит к ослаблению неметаллических и усилению металлических свойств в ряду от азота к Bi.

Азот и фосфор – типичные неметаллы, т.е. кислотообразователи. У мышьяка сильнее выражены неметаллические свойства. У сурьмы неметаллические и металлические свойства проявляются приближенно в одинаковой степени. Для висмута характерно преобладание металлических свойств.

Закономерно нарастает от N к Bi ионный радиус, но он много меньше атомного. Это связано с тем, что внешние электроны находятся на значительном расстоянии от ядра по сравнению с предвнешними, и когда атом теряет внешние электроны, переходит в ион, радиус иона соответственно ниже радиуса атома. Плотность закономерно нарастает.

Незакономерность изменения свойств (Tпл и Ткип) обусловлена особенностью строения кристаллической решетки. Если азот – это газ, то последний элемент группы находится в твердом агрегатном состоянии.

В кристаллической решетке молекулы белого фосфора связаны межмолекулярными силами (силы Ван дер Ваальса), а так как они очень слабы, то белый фосфор легко распадается на молекулы под влиянием различных воздействий (температуры, растворителя). По этой причине он легко плавится при 44°С в бесцветную жидкость, при 275°С кипит.

Для элементов, не проявляющих металлических свойств стандартные электронные потенциалы отсутствуют.

Электронное строение внешних энергетических уровней атомов азота и фосфора следующие:

У атома азота три неспаренных электрона. Поэтому валентность азота равна трем. Из-за отсутствия у него d-подуровня на внешнем уровне его электроны разъединиться не могут. Однако в результате донорно-акцепторного взаимодействия азот становится четырехвалентным.

У атомов фосфора и последующих элементов VА группы имеются свободные орбитали на d-подуровне и переходя в возбужденное состояние будут разъединятся 3s-электроны. В невозбужденном состоянии у всех элементов 5А группы валентность равна 3, а в возбужденном состоянии всех, кроме азота, равна пяти.

Элементы этой группы образуют газообразные водородные соединения (гидриды) типа ЭН3 , в которых степень их окисления -3.



NH3 аммиак

PH3 фосфин

AsH3 арсин

SbH3 стибин

BiH3 висмутин

AsH3, SbH3 газы с неприятным запахом, легко разлагаются. Чрезвычайно ядовиты.

В кислородных соединениях для элементов VА группы наиболее характерны степени окисления +3 и +5. Для висмута более характерна степень окисления +3.

Все элементы VА группы имеют оксиды типа Э2О5 и гидроксиды НЭО3 или Н3ЭО4 , которые обладают кислотными свойствами. Кроме того для них характерны оксиды типа Э2О3 и соответствующие гидроксиды НЭО2 или Н3ЭО3, у азота и фосфора они имеют кислотные свойства, у мышьяка и сурьмы – амфотерные, а у висмута проявляют основной характер.

Характерно также образование галидов типа ЭГ3 (тригалиды), которые (за исключением NF3) гидролизуются по схеме:

ЭГ3 + 3Н2О = Н3ЭО3 + 3НГ

ЭCl3 + 3H2O = H3ЭО3 + 3НCl

но в присутствии галоводородной кислоты галиды сурьмы и висмута гидролизуются с образованием галоксидов, например

SbCl3 + H2O = SbOCl + 2HCl

Группу SbO+ называют антимонилом, а соединение SbOCl – хлоридом антимонила. Для фосфора, мышьяка и сурьмы известны пентафториды ЭF5 , а для фосфора и сурьмы пентахлориды ЭCl5.

Мышьяк и сурьма имеют ряд аллотропных форм. Наиболее устойчивые металлические формы серого (As) и серебристо-белого (Sb) цвета. Это хрупкие вещества, легко превращаемые в порошок. Висмут – металл серебристо-белого цвета с едва заметным розовым оттенком.

Соединения As, Sb, Bi ядовиты. Особо опасны соединения As3+ ( AsH3- арсин).

Химия азота

Азот (лат. nitrogenium) в свободном состоянии газ без цвета и запаха. Азот – основной компонент атмосферы Земли (78,09% по объему или 75,6% по массе, всего около 4·1015 т). Мы живем в азотной атмосфере, умеренно обогащенной кислородом и в малых количествах другими химическими элементами.

В космосе он занимает 4-е место вслед за водородом, гелием и кислородом. В живых организмах его до 0,3% в виде соединений. Растения, получая азот из почвы в виде минеральных солей, используют его для синтеза белков, витаминов и других жизненно важных веществ.

Азот относится к органогенам, наряду с углеродом, водородом и кислородом – элементы, которые чаще всего содержатся в органических веществах. Все важнейшие части клеток (протоплазма и ядро) построены из белковых веществ. Без белка нет жизни, а без азота нет белка.

Свободный азот несколько легче воздуха. Он плохо растворим в воде. Прочность молекулы азота велика. Даже при 3300°С только одна из тысяч молекул N2 распадается на атомы. Поэтому свободный азот в обычных условиях инертен к подавляющему большинству веществ. Для того чтобы азот вступил в химическую реакцию, требуется предварительная активация его молекул путем нагревания, облучения, действие катализатора или другими способами.

Из металлов свободный азот реагирует в обычных условиях только с литием, образуя нитрид:

6Li + N2 = 2Li3N

С Na, Ca, Mg реакция идет только при нагревании. С кислородом азот взаимодействует только в электрической дуге (или при грозовом разряде в атмосфере) при температуре около 3000 0С:

N2 + O2 = 2NO

С водородом реакция идет при нагревании (t ≈ 450-5000С), под давлением и в присутствии катализатора (оксидов металлов)

N2 + 3H2 = 2NH3

Пропуская азот через раскаленный кокс можно получить (дициан) – соединение азота с углеродом N ≡ C — C ≡ N. С другими неметаллами кроме бора свободный азот не реагирует.

Причина инертности молекулярного азота – крайне прочная ковалентная неполярная связь. Два атома в молекуле удерживаются одной σ - связью и двумя π- связями. Т.е. связи в молекуле азота неравноценны. На разрушение молекулы азота на атомы затрачивается довольно большое количество энергии:

N2 = 2N ∆H0 = 946 кДж/моль

Строение молекулы N2

Получение N2

В промышленности – сжижением воздуха с выделением фракций азота.

В лаборатории разложением нитрита аммония или азида натрия

NH4NO2 = N2 + 2 H2O

2 NaN3 = 3 N2 + 2 Na

или 2NH3 + 3Br = N2 + 6 HBr

Водородные соединения азота

С водородом азот образует два соединения: аммиак NH3 и гидразин N2H4(H2N – NH2). Наибольшее значение имеет аммиак. Известен также гидроксиламин NH2OH.

В лаборатории получают слабым нагреванием смеси хлорида аммония с гидроксидом натрия:

NH4Cl + NaOH = NaCl + NH3 + H2O

Основным промышленным способом получения аммиака является синтез его из азота и водорода

N2 + 3H2 ↔ 2NH3 ∆ Н0 = - 82,4

( Катализатор Pt; t = 450 - 5000С; Р = 250 атм)

Равновесие обратимой реакции смещается вправо действием высокого давления ≈ 30МПа.

NH3 – бесцветный газ с резким характерным запахом, почти в 2 раза легче воздуха. Молекула NH3 поляризована – общие электронные пары сдвинуты к азоту. Кроме того, у атома азота остается неподеленной пара электронов. Это дополнительно увеличивает полярность и обуславливает многие свойства аммиака. Жидкий аммиак, подобно воде, хороший растворитель ионных соединений. Молекулы в жидком аммиаке ассоциированы за счет образования водородных связей.

Расположение связей в аммиаке тетраэдрическое, причем неподеленная пара электронов атома азота занимают одну из вершин тетраэдра.

Аммиак – очень реакционно-способное вещество. Для него характерны реакции окисления и присоединения (благодаря неподеленной паре электронов). Наличие неподеленной пары определяет основные свойства аммиака, который может присоединять протон, образуя ион аммония NH4+.

NH3 очень хорошо растворим в воде, но максимальная концентрация ω(NH3)= 25%. В растворе имеют место равновесия:

NH3 + H2O ↔ NH3 • H2O NH3 • H2O ↔ NH4OH

NH4OH ↔ NH4+ + OH– KдNH4OH = 1,8 • 10- 5

Основная масса NH3 в растворе находится в виде гидрата аммиака NH3 · H2O. Поэтому, хотя NH4OH диссоциирует почти нацело, его условно считают слабым основанием. Поскольку азот в NH3 имеет низкую степень окисления –3, аммиак является восстановителем в ряде реакций.

В кислороде аммиак окисляется без катализатора:

4NH3 + 3O2 = 2N2 + 6 H2O,

а в присутствии катализатора платины протекает процесс

4NH3 + 5O2 = 4NO + 6H2O

При нейтрализации раствора аммиака кислотами образуются растворы солей аммония, содержащие ион NH4+.

NH3 + HCl = NH4Cl

NH3 + H2SO4 = (NH4)2SO4

В этих реакциях ион аммония подобен ионам одновалентных металлов. При замещении в молекуле аммиака 3-х атомов водорода получаются нитриды, содержащую группу N-3 , 2-х атомов водорода – имиды NН-2 , одного атома водорода - амиды NН2- .

2 NH3 + 6Na = 2Na3N +3H2 нитрид натрия

NH3 +2Na = Na2HN + H2 имид натрия

2 NH3 +2Na = 2NaH2N + 3H2 амид натрия

NH3 всегда - восстановитель, окисляется до N2 или NO.

t

3CuO + 2NH3 → 3Cu +N2 + 3H2O

На этом свойстве основано применение NH3 и его солей в процессе пайки металлов – снятие оксидной пленки с поверхности.

3CuO + 2NH4Cl = 3Cu +N2 +2HCl + 3H2O

3CuO + 2NH4Cl = 2Cu + 2CuCl2 + 2H2O +NO




4668014476151178.html
4668058760795707.html
    PR.RU™